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Abstract. A first-principles pseudopotential method combined with the virtual-crystal
approximation (VCA) is used to calculate band offsets of AlxGa1−xP–GaP(001) heterostructures.
It was found that both the valence and conduction band offsets vary linearly with the alloy
composition. Our results are in good agreement with the experimental data.

Semiconductor superlattices and quantum wells are of considerable technological importance
because of their great flexibility in tailoring electronic properties of semiconductor devices.
The valence and conduction band offsets (VBOs and CBOs) are fundamental parameters
which determine the physical properties of these heterostructures. Both model theories [1–
5] and first-principles theories [6–13] have been developed to determine the band offset.
Model theories rely on information about the bulk alone, and do not provide a complete
description of the electron distribution at the interface. The only way to obtain a full
picture of this effect is to perform a calculation in which the electrons are allowed to
adjust to the specific environment created by the interface. This can be accomplished
by performing self-consistent first-principles calculations, which will correctly describe the
electrostatic potential shift that determines the band lineups. In this respect, self-consistent
first-principles calculations have shown their superiority over model theories.

AlP–GaP and AlxGa1−xP–GaP superlattices have attracted a great deal of interest [14–
17] because of the possibility of creating a direct band-gap material from indirect-band-
gap constituents. If the indirect-band-gap to direct-band-gap transition can be realized in
Al xGa1−xP–GaP superlattices, they will become the most promising materials available for
optical devices in the visible region (from green to yellow). To understand the nature and
the characteristics of luminescence of AlxGa1−xP–GaP, a good determination of the band
lineups is very important. Morii and his coworkers [18] studied the conduction band offsets
of Al xGa1−xP–GaP(001) heterojunctions by means of capacitance–voltage measurements.
However, to our knowledge, there are no first-principles pseudopotential calculations on this
material system so far. In this work we present results of first-principles pseudopotential
calculations of VBOs of AlxGa1−xP–GaP(001) heterostructures with the virtual-crystal
approximation (VCA).

Wei and Zunger [19] have discussed the treatment of the disordered ternary alloy using
the VCA. They believe that, for most alloy systems, the VCA tends to underestimate the
optical bowing (non-linear deviations from the composition-weighted band gaps), due to
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a strong ordering potential. On the other hand, Nelsonet al [20] have shown that the
first-principles virtual-crystal calculations can yield a good description of the band offsets
in the GaAs–AlxGa1−xAs system since the optical bowing is small. Owing to the close
matching of the lattice constants of GaP and AlP, AlxGa1−xP compounds exhibit a small
difference between Ga–P and Al–P bond lengths. This suggest that, at least to a first-
order approximation, one can neglect lattice distortion effects in AlxGa1−xP and assume
that the atomic positions of the anion and the cation sublattices remain unchanged on going
from pure compound systems GaP and AlP. When cations are randomly distributed, the
resulting system is the homogeneous alloy AlxGa1−xP, which can be treated within the
VCA. Thus, we believe that the use of the VCA to estimate the band offsets of AlxGa1−xP–
GaP heterostructures is reasonable.

We follow the theoretical framework described in detail elsewhere [8, 9]. As usual, the
VBO can be divided into two parts:

VBO = 1EV +1V. (1)

Here1EV , which is referred to as the band structure term, is the difference between two
bulk material band edges, when the single-particle eigenvalues are measured with respect
to the average of the electrostatic potential in each bulk material. The spin–orbit effects are
included in this term. This term is however characteristic of the two individual bulks, and
can be evaluated from separate calculations for the two materials. The second term1V in
(1) is the difference between the macroscopic averaged electrostatic potential on the two
sides of the interface, which contains all of the interface effects.

The macroscopic averageVmacro(z) of the potential V (x, y, z) throughout the
heterojunction is obtained from the relations

Vmacro(z) =
∫ +d/4
−d/4

dz′ V
(
z + z′) (2)

V (z) = 1

A

∫
A

dx dy V (x, y, z) (3)

whered is the lattice constant andV (z) is a planar-averaged potential, i.e., the full potential
V (x, y, z) averaged over a two-dimensional unit cellA in a plane parallel to the interface.
Far from the interface, this planar-averaged potentialV (z) is periodic over a distanced/2.
This is a relation of the fact that the charge density far from the interface is identical to
that of the bulk material, and therefore the potential in this region must be identical to the
potential of the bulk material to within a constant. The macroscopic-averaged potential as
defined in (2) is thus a constant far from the interface, and the difference in the constant
values on either side of the interface is simply1V .

The calculations are performed within the framework of density functional theory (DFT)
[21, 22] with the local density approximation (LDA), applied in the momentum space
formalism [23], using non-local norm-conserving pseudopotentials [24], and a plane-wave
basis set. For the exchange–correlation potential we use the Ceperley–Alder [25] form of
the LDA as parametrized by Perdew and Zunger [26]. The Brillouin zone (BZ) integrations
are performed by sampling on a regular Monkhorst–Pack (MP) mesh [27] in reciprocal
space, which is equivalent to using Chadi–Cohen special points [28].

The bulk band structure calculations were performed using the zinc-blende unit cell.
The Brillouin zone integrations were performed by sampling on a regular (444) MP mesh
in reciprocal space, which is equivalent to using ten special points. The wavefunctions
were expanded in a plane wave basis set including all plane waves up to 16 Ryd in
kinetic energy. For the potential lineup term, the calculations were performed based on
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(Al xGa1−xP)3(GaP)3(001) superlattice geometry where all the atoms occupy the sites of
a perfect tetragonal lattice whose lattice constantd = 5.456 Å is the average of the
experimental lattice constants of AlP and GaP. The basis set consists of plane waves with a
kinetic energy cutoff of 9.0 Ryd and the (444) MP cubic mesh appropriately folded for this
geometry (equivalent to using eight special points) is used to performk-space integrations.
To check that the two interfaces in our supercell are sufficiently far apart to be decoupled,
the macroscopic averaged charge densitynmacro(z) and the macroscopic averaged potential
Vmacro(z) for the (AlP)3(GaP)3(001) superlattice are plotted in figure 1. The flatness of
nmacro(z) and Vmacro(z) far from the interfaces indicates our supercell is long enough to
recover the bulk features midway between the two interfaces. Similar results hold for
other alloy compositions. We have also performed convergence tests with different MP
meshes and kinetic energy cutoff values and estimate our relative numerical accuracy to be
approximately 0.03 eV.

Figure 1. The macroscopic averaged charge density (solid line) and macroscopic averaged
electrostatic potential (dotted line) of the (AlP)3(GaP)3(001) supercell plotted in the direction
normal to the interface.

Combining the band structure term and potential lineup term, the VBO can be obtained.
However, the determination of the CBOs is not straightforward, since the band gaps are
underestimated within the LDA. Thus the following equation [29] was used to describe the
indirect band gaps of AlxGa1−xP:

Eg, ind = 2.28+ 0.16x. (4)

Combining with the relationship1Eg = VBO+ CBO, the CBOs can be determined. The
calculated VBOs and derived CBOs with various Al compositions are plotted in figure 2 and
summarized in table 1. For the whole composition range, AlxGa1−xP–GaP heterostructures
have type II alignments with the band edge of GaP lying higher than that of AlxGa1−xP. It
is noted that both VBOs and CBOs increase linearly with increasing Al compositionx.

For the AlP–GaP(001) heterojunction, the calculated VBO is 0.42 eV. Using
experimental band gap energies of 2.45 and 2.27 eV for AlP and GaP, respectively, we
obtain a CBO of 0.24 eV, which is in very good agreement with the CBO= 0.23 eV,
experimentally obtained by Morii and his coworkers [18].
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Figure 2. The valence and conduction band offsets of AlxGa1−xP–GaP(001) heterostructures
with various Al compositions. The linear fitted lines are also plotted.

Table 1. Calculated valence and conduction band offsets (VBOs and CBOs) including the
spin–orbit interaction.

Structure VBO (eV) CBO (eV)

Al 0.2Ga0.8P–GaP 0.07 0.04
Al 0.4Ga0.6P–GaP 0.15 0.08
Al 0.6Ga0.4P–GaP 0.23 0.14
Al 0.8Ga0.2P–GaP 0.32 0.19
AlP–GaP 0.42 0.24 (0.23)a

a Experimental value [18].

In conclusion, we have shown by means of self-consistent first-principles virtual-crystal
calculations that both the valence and conduction band offsets depend linearly on the alloy
composition in AlxGa1−xP–GaP(001) heterostructures. This confirms,a posteriori, that the
first-principles pseudopotential method combined with the VCA can yield a good description
of band offsets for this system.
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[24] Hamann D R, Schlüter M and Chiang C 1979Phys. Rev. Lett.43 1494
[25] Ceperley D M and Alder B J 1980Phys. Rev. Lett.45 566
[26] Perdes J and Zunger A 1981Phys. Rev.B 23 5048
[27] Monkhorst H J and Pack J D 1976Phys. Rev.B 13 5188
[28] Chadi D J and Cohen M L 1973 Phys. Rev.B 8 5747
[29] Landolt–Börnstein New Series1987 vol 22a, ed O Madelung (Berlin: Springer)


